details

Location Washington, DC
Completed 2012
Size 2,700 ft²
Certification PHIUS+
Design Team Parsons The New School for Design, The New School for Public Engagement, Stevens Institute of Technology
Developers DC Department of Housing and Community Development, Habitat for Humanity

Deanwood has long been defined by self-reliance and resilience, a shelter in the slow march toward justice. In the eastern corner of Washington, DC, land that once grew tobacco was tilled first by slaves and then again by free African Americans who sought four walls and a roof. During the postbellum era, the community was a haven from prejudice; later, it was the stomping ground and stage for influential agents of change such as Marvin Gaye and Martin Luther King Jr.

Poised to continue this tradition, the neighborhood is the fitting location of a project that, less than a year after completion, is inspiring new attitudes toward affordable housing and sustainable design and has sparked further discussion on the viability of Passive House in the United States. From the minds of students competing in the Solar Decathlon to the blueprints of housing authorities and nonprofit developers, people are looking to Deanwood and the aptly named Empowerhouse as a model for affordable, net-zero-energy homes.

It began with a contest.

As they were preparing in 2009 for the Solar Decathlon—the 10-category competition put on by the Department of Energy that challenges college students to design, build, and operate solar-powered houses—students at Parsons The New School for Design and The New School for Public Engagement, in partnership with the Stevens Institute of Technology, decided they wanted to avoid the tragic fate of most Decathlon entries: after the awards are given and the houses have run their course being displayed on the National Mall, two years’ worth of work is dismantled without the chance to provide anything beyond a handful of good ideas. The students thought if the purpose of the Decathlon is to produce something renewable, their design should be given a second life.

The Parsons team, led by faculty members Laura Briggs and David Lewis, wanted to reconstruct its entry after the 2011 competition—a first for the Decathlon—but needed a community partner. With the intention of incorporating social responsibility and community development (two important components of the New School’s approach) into the project, they found their ideal partner in Habitat for Humanity of Washington, DC. The Habitat model uses volunteerism and sponsorship to sell constructed homes to low-income families at less than the cost to build them.

Empowerhouse would be DC Habitat’s first foray into Passive House and the first home built to Passive House standards in the District of Columbia. Working with the DC Department of Housing and Community Development (DHCD) to identify a prospective homeowner, students had the opportunity to design not just an architecturally rich or environmentally friendly home, but also one that both complements the community’s heritage and responds to the unique needs of its inhabitants.

The house uses an open plan with plenty of windows to bring light all the way to the second level. What little lighting is actually needed is provided by LED lights that reflect off the interior’s surfaces. Coupled with task-lighting, the combination creates a varied living environment.

The house uses an open plan with plenty of windows to bring light all the way to the second level. What little lighting is actually needed is provided by LED lights that reflect off the interior’s surfaces. Coupled with task-lighting, the combination creates a varied living environment. Photo: Martin Seck

Passive House is simple.

Certified homes are defined by their insulation, air-tightness, and naturally occurring temperature regulation. That doesn’t mean the standard is easy to achieve. There are two metrics used to measure performance. To be certified by the Passive House Institute US, a dwelling must demonstrate no more than 0.6 air changes per hour at a building pressure of 50 Pascal, and annual energy for heating and cooling cannot exceed 4.75 kBtu per square foot (the US average is 53 kBtu). Orientation is equally important. South-facing fronts and triple-glazed glass allow for heat gain in winter months while high-performance insulation and a nearly nonexistent thermal bridge provide comfort in all weather. Combined, the latter two trap heat generated by mechanical systems, inhabitants, and sunlight to provide warmth in winter months.

What all this means for a homeowner is significant. A typical household in Deanwood spends approximately $2,300 per year on energy, but a similarly sized home built to Passive House standards would cost merely $690, less than a third of the original cost. Add a photovoltaic array, as the Parsons team did, and that number drops to zero.

For at least three decades, Passive House largely has been a topic of European, particularly German, discussion—even at Parsons, Briggs says a special course was created to provide an informational foundation for the little-known philosophy—but some of the movement’s forerunners were constructed in North America. At the University of Illinois, the Small Homes Council research group designed the Lo-Cal, or Low Calorie, house in 1976, which outperformed traditionally built homes in energy consumption without the use of new technology but rather with thoughtful design. Shortly after, in 1977, the Saskatchewan Research Council built the Saskatchewan Conservation House, which was lauded for its thermal envelope, insulation—especially in hard-to-reach areas—and the affordability of such features.

Following Passive House guidelines, the Empowerhouse features maximized solar gain and shading, high-performance windows and doors, and strategically arranged mechanical systems, which are grouped in a “wet” module located near the kitchen and bathroom, requiring minimal infrastructure (saving on materials) and improving heat retention. Yet what holds it all together, literally and figuratively, are the walls. The students’ wall design, which uses engineered wood I-joists surrounded by two layers of wood sheathing and blown-in cellulose insulation, is super resistant to moisture. It is not necessarily revolutionary, but it is incredibly efficient and so easily replicable that Habitat volunteers were able to construct the home without special training. But this home had to be more than efficient—it had to be livable.

The Empowerhouse echoes Deanwood’s architectural history with a prominent porch designed to be a gathering place for neighbors. The home also has inspired a community garden down the street. Photo: Martin Seck

The Empowerhouse echoes Deanwood’s architectural history with a prominent porch designed to be a gathering place for neighbors. The home also has inspired a community garden down the street. Photo: Martin Seck

Deanwood is a porch community.

And it is an acknowledgement of the community’s roots and its Southern influence that the Empowerhouse’s front porch lines up perfectly with those of its neighbors on Gault Place. Stand on that porch, look to your left or right, and you have a snapshot of the neighborhood, framed by the cutaways that allow for an easy chat between neighbors. “It could be a typical DC August, hot and muggy, and you’ll still find families visiting each other across the porches,” says Orlando Velez, who worked on the Empowerhouse as a Parsons student and, rather appropriately, now manages housing services for Habitat for Humanity in Washington, DC.

With Deanwood’s architectural patchwork of Folk, Craftsman, and Colonial Revival styles, the design team also had to be cognizant of the historical aesthetic of the neighborhood even while trying to revitalize it. As an organization devoted to increasing homeownership in underserved communities through the creation of affordable housing and economic opportunity, it was the DHCD that identified Deanwood as the project’s potential site. The agency’s director, Michael Kelly, says the neighborhood presented the right conditions—a need for housing, receptiveness to sustainable goals, and the potential to function as a showpiece for successful change—for a broader renewal effort.

In the months leading up to the Empowerhouse’s construction, the Parsons team conducted workshops to engage residents about the sustainable lifestyles the home is meant to inspire. The homeowners would have the benefit of a digital system that provides feedback on the home’s resource use as well as a handbook on maintaining and maximizing the entire structure’s potential, but community members interested in general green living also learned about ways to incorporate practices such as rainwater harvesting and personal gardening into their existing properties. Kelly says the home has inspired a spin-off community garden, and plans are under way for a learning garden in the neighborhood.

One of homeowner Lakiya Culley’s sons stares out the window of his new home. Windows by Intus are all triple-paned, and the solar-powered Empowerhouse serves as a teaching tool for the community and generations to come. During construction, the Parsons team held workshops for neighborhood residents to learn about the sustainable features of the home. Photo: Ashley Hartzell

One of homeowner Lakiya Culley’s sons stares out the window of his new home. Windows by Intus are all triple-paned, and the solar-powered Empowerhouse serves as a teaching tool for the community and generations to come. During construction, the Parsons team held workshops for neighborhood residents to learn about the sustainable features of the home. Photo: Ashley Hartzell

The home took first place.

In the affordability category (new in 2011), the Empowerhouse earned full points. With a final cost of only $229,000, it beat every other entry. Even pursuing Passive House standards and generating 100 percent of its own energy, Velez says that his colleagues found that the up-front cost of the photovoltaic array and specialized materials to improve the home’s air-tightness and thermal envelope only increased the build-out cost between nine and fifteen percent. Given this data, Velez says DC Habitat will be incorporating passive design into more of its projects, and in July 2013, the group constructed six units that did just that.

The history of Deanwood tells a story of empowerment. For more than a century residents have determined their own paths with the simple ethics of pride in community and desire for improvement. Civil rights activists turned the force of brutality against itself by challenging the notion of self-defense. Passivity became an offensive. Similarly, the Empowerhouse stands as a symbol of the power of passivity and of the commitment by everyone involved to resist the status quo—whether it is inefficient and wasteful buildings, unaffordable or inadequate housing, or a lack of access to fresh food.

The families living in the Empowerhouse are at the epicenter of a movement, and as vegetables begin to sprout at the nearby learning garden and the DHCD shares the home at the 2013 Reclaiming Vacant Properties Conference, it’s clear that a sustainable vision is spreading beyond just the four walls of the house. With that vision, the students at Parsons, the volunteers with DC Habitat, the employees of the DHCD, and the residents of Deanwood all have the ability to continue to create change. The Empowerhouse is a ticket to a greener, healthier community, and these people are the vehicles. “Empowerhouse has the ability to be transformative,” Kelly says. “It is a symbolic, almost sculptural representation of how communities can embrace sustainability by wrapping their hearts and minds around it.”